14 research outputs found

    Anomaly Detection Based on Multiple Streams Clustering for Train Real-Time Ethernet

    Get PDF
    With the increasing traffic of train communication network (TCN), real-time Ethernet becomes the development trend. However, Train Control and Management System (TCMS) is inevitably faced with more security threats than before because of the openness of Ethernet communication protocol. It is necessary to introduce effective security mechanism into TCN. Therefore, we propose a train real-time Ethernet anomaly detection system (TREADS). TREADS introduces a multiple streams clustering algorithm to realize anomaly detection, which considers the correlation between the data dimensions and adopts the decay window to pay more attention to the recent data. In the experiment, the reliability of TREADS is tested based on the TRDP data set collected from the real network environment, and the models of anomaly detection algorithms are established for evaluation. Experimental results show that TREADS can provide a high reliability guarantee, besides, the algorithm can detect and analyze network anomalies more efficiently and accurately

    The role of gut archaea in the pig gut microbiome: a mini-review

    Get PDF
    The gastrointestinal microbiota of swine harbors an essential but often overlooked component: the gut archaea. These enigmatic microorganisms play pivotal roles in swine growth, health, and yield quality. Recent insights indicate that the diversity of gut archaea is influenced by various factors including breed, age, and diet. Such factors orchestrate the metabolic interactions within the porcine gastrointestinal environment. Through symbiotic relationships with bacteria, these archaea modulate the host’s energy metabolism and digestive processes. Contemporary research elucidates a strong association between the abundance of these archaea and economically significant traits in swine. This review elucidates the multifaceted roles of gut archaea in swine and underscores the imperative for strategic interventions to modulate their population and functionality. By exploring the probiotic potential of gut archaea, we envisage novel avenues to enhance swine growth, health, and product excellence. By spotlighting this crucial, yet under-investigated, facet of the swine gut microbiome, we aim to galvanize further scientific exploration into harnessing their myriad benefits

    Archaea: An under-estimated kingdom in livestock animals

    Get PDF
    Archaea are considered an essential group of gut microorganisms in both humans and animals. However, they have been neglected in previous studies, especially those involving non-ruminants. In this study, we re-analyzed published metagenomic and metatranscriptomic data sequenced from matched samples to explore the composition and the expression activity of gut archaea in ruminants (cattle and sheep) and monogastric animals (pig and chicken). Our results showed that the alpha and beta diversity of each host species, especially cattle and chickens, calculated from metagenomic and metatranscriptomic data were significantly different, suggesting that metatranscriptomic data better represent the functional status of archaea. We detected that the relative abundance of 17 (cattle), 7 (sheep), 20 (pig), and 2 (chicken) archaeal species were identified in the top 100 archaeal taxa when analyzing the metagenomic datasets, and these species were classified as the “active archaeal species” for each host species by comparison with corresponding metatranscriptomic data. For example, The expressive abundance in metatranscriptomic dataset of Methanosphaera cuniculi and Methanosphaera stadtmanae were 30- and 27-fold higher than that in metagenomic abundance, indicating their potentially important function in the pig gut. Here we aim to show the potential importance of archaea in the livestock digestive tract and encourage future research in this area, especially on the gut archaea of monogastric animals

    S-allyl-l-cysteine attenuates bleomycin-induced pulmonary fibrosis and inflammation via AKT/NF-ÎşB signaling pathway in mice

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by inflammation, multifocal fibrotic lesions and excessive collagen deposition with limited therapies. As a major bioactive compound in garlic, S-allyl-l-cysteine (SAC) is a neuroprotective drug candidate to prevent cognitive decline, however, its anti-pulmonary fibrotic activity remains unknown. Here, we investigated whether SAC could attenuate bleomycin (BLM)-induced pulmonary fibrosis and inflammation in mice. Our results showed that SAC dose-dependently reduced the infiltration of inflammatory cells, pulmonary lesions and collagen deposition in BLM treated mice with downregulated mRNA expression levels of fibrotic genes including alpha smooth muscle actin (α-SMA), fibronectin, collagen I and collagen III as well as the protein level of α-SMA. In addition, SAC could also reduce the mRNA expression of inflammatory mediators such as TNF-α and iNOS. Furthermore, higher phosphorylation of AKT and NF-κB p65 in IPF patient samples and murine samples was verified by immunohistochemistry while SAC could decrease the phosphorylation level of AKT and NF-κB p65 in mice stimulated with BLM. These findings, for the first time, indicate that SAC might mediate AKT/NF-κB signaling pathway to inhibit BLM-induced pulmonary fibrosis and support the potential role of SAC as an anti-pulmonary fibrosis agent. Keywords: S-allyl-l-cysteine, Pulmonary fibrosis, Inflammation, AKT, NF-κ

    Prediction of Train Station Delay Based on Multiattention Graph Convolution Network

    No full text
    Train station delay prediction is always one of the core research issues in high-speed railway dispatching. Reliable prediction of station delay can help dispatchers to accurately estimate the train operation status and make reasonable dispatching decisions to improve the operation and service quality of rail transit. The delay of one station is affected by many factors, such as spatiotemporal factor, speed limitation or suspension caused by strong wind or bad weather, and high passenger flow caused by major holiday. But previous studies have not fully combined the spatiotemporal characteristics of station delay and the impact of external factors. This paper makes good use of the train operation data, proposes the multiattention mechanism to capture the spatiotemporal characteristics of train operation data and process the external factors, and establishes a Multiattention Train Station Delay Graph Convolution Network (MATGCN) model to predict the train delay at high-speed railway stations, so as to provide references for train dispatching and emergency plan. This paper uses real train operation data coming from China high-speed railway network to prove that our model is superior to ANN, SVR, LSTM, RF, and TSTGCN models in the prediction effect of MAE, RMSE, and MAPE

    Polyphenol Extract of Moringa Oleifera Leaves Alleviates Colonic Inflammation in Dextran Sulfate Sodium-Treated Mice

    No full text
    Moringa oleifera Lam. is an essential herb used for the treatment of inflammation, diabetes, high blood pressure, and other diseases. In this study, phenolic extracts of M. oleifera leaves were obtained and analyzed. The results showed that the main identifiable phenols were astragalin, chlorogenic acid, isoquercitrin, kaempferitrin, luteolin, quercetin, and rutin. The effects of M. oleifera polyphenol extract (MOPE) on experimental colitis induced by 3% dextran sulfate sodium (DSS) were investigated. The results showed that oral administration of MOPE significantly alleviated the symptoms of DSS-induced colitis. MOPE significantly reduced weight loss, the disease activity index, colon shortening, and mucosal damage. In addition, MOPE attenuated the infiltration of CD3+ T cells, CD177+ neutrophils, and F4/80+ macrophages and significantly inhibited the secretion of IL-6 and TNF-α. After the MOPE administration, the expression of proteins associated with the NF-κB signaling pathway changed. Specifically, compared with that of the DSS group, the protein expression of NF-κB p65 and p-IκBα was downregulated, and the expression of IκBα was upregulated. This study revealed the anti-inflammatory effects and mechanisms of MOPE in the colon, indicating its potential use in preventing inflammation-driven diseases

    The unique gut microbiome of giant pandas involved in protein metabolism contributes to the host’s dietary adaption to bamboo

    No full text
    Abstract Background The gut microbiota of the giant panda (Ailuropoda melanoleuca), a global symbol of conservation, are believed to be involved in the host’s dietary switch to a fibrous bamboo diet. However, their exact roles are still largely unknown. Results In this study, we first comprehensively analyzed a large number of gut metagenomes giant pandas (n = 322), including 98 pandas sequenced in this study with deep sequencing (Illumina) and third-generation sequencing (nanopore). We reconstructed 408 metagenome-assembled genomes (MAGs), and 148 of which (36.27%) were near complete. The most abundant MAG was classified as Streptococcus alactolyticus. A pairwise comparison of the metagenomes and meta-transcriptomes in 14 feces revealed genes involved in carbohydrate metabolism were lower, but those involved in protein metabolism were greater in abundance and expression in giant pandas compared to those in herbivores and omnivores. Of note, S. alactolyticus was positively correlated to the KEGG modules of essential amino-acid biosynthesis. After being isolated from pandas and gavaged to mice, S. alactolyticus significantly increased the relative abundance of essential amino acids in mice jejunum. Conclusions The study highlights the unique protein metabolic profiles in the giant panda’s gut microbiome. The findings suggest that S. alactolyticus is an important player in the gut microbiota that contributes to the giant panda’s dietary adaptation by more involvement in protein rather than carbohydrate metabolism. Video Abstrac

    Dehydrocostus Lactone Suppresses LPS-induced Acute Lung Injury and Macrophage Activation through NF-ÎşB Signaling Pathway Mediated by p38 MAPK and Akt

    No full text
    Acute lung injury (ALI) is a severe clinical disease marked by dysregulated inflammation response and has a high rate of morbidity and mortality. Macrophages, which play diverse roles in the inflammatory response, are becoming therapeutic targets in ALI. In this study we investigated the effects of dehydrocostus lactone (DHL), a natural sesquiterpene, on macrophage activation and LPS-induced ALI. The macrophage cell line RAW264.7 and primary lung macrophages were incubated with DHL (0, 3, 5, 10 and 30 μmol/L) for 0.5 h and then challenged with LPS (100 ng/mL) for up to 8 hours. C57BL/6 mice were intratracheally injected with LPS (5 mg/kg) to induce acute lung injury (ALI) and then treated with a range of DHL doses intraperitoneally (5 to 20 mg/kg). The results showed that DHL inhibited LPS-induced production of proinflammatory mediators such as iNOS, NO, and cytokines including TNF-α, IL-6, IL-1β, and IL-12 p35 by suppressing the activity of NF-κB via p38 MAPK/MK2 and Akt signaling pathway in macrophages. The in vivo results revealed that DHL significantly attenuated LPS-induced pathological injury and reduced cytokines expression in the lung. NF-κB, p38 MAPK/MK2 and Akt signaling molecules were also involved in the anti-inflammatory effect. Collectively, our findings suggested that DHL is a promising agent for alleviating LPS-induced ALI

    Identification of Target Proteins of Mangiferin in Mice with Acute Lung Injury Using Functionalized Magnetic Microspheres Based on Click Chemistry

    No full text
    Prevention of the occurrence and development of inflammation is a vital therapeutic strategy for treating acute lung injury (ALI). Increasing evidence has shown that a wealth of ingredients from natural foods and plants have potential anti-inflammatory activity. In the present study, mangiferin, a natural <i>C</i>-glucosyl xanthone that is primarily obtained from the peels and kernels of mango fruits and the bark of the Mangifera indica L. tree, alleviated the inflammatory responses in lipopolysaccharide (LPS)-induced ALI mice. Mangiferin-modified magnetic microspheres (MMs) were developed on the basis of click chemistry to capture the target proteins of mangiferin. Mass spectrometry and molecular docking identified 70 kDa heat-shock protein 5 (Hspa5) and tyrosine 3-monooxygenase (Ywhae) as mangiferin-binding proteins. Furthermore, an enzyme-linked immunosorbent assay (ELISA) indicated that mangiferin exerted its anti-inflammatory effect by binding Hspa5 and Ywhae to suppress downstream mitogen-activated protein kinase (MAPK) signaling pathways. Thoroughly revealing the mechanism and function of mangiferin will contribute to the development and utilization of agricultural resources from M. indica L

    Bolaform Molecules Directing Intergrown Zeolites

    No full text
    Understanding of epitaxial and rotational intergrowth is particularly important for the design and synthesis of hierarchically structured zeolites. Herein, we propose a new route for fabricating hierarchical MTW- and MFI-type zeolites with intergrown structures by tuning the methylene chain lengths between the two N-heterocycles in bolaform quaternary ammonium structure-directing agents (SDAs). MTW-type zeolites with 66.4° rotational intergrowth and MFI-type zeolites with 90° rotational intergrowth were synthesized with methylene chain lengths of 4–6 and 7–9, respectively. A possible theoretical evidence of the geometrical match between SDAs and zeolite structures was proposed by the binding energy obtained by molecular mechanics calculations. It is speculated that the bolaform SDAs are located in the straight 12-membered ring (MR) channels along the <i>b</i> direction of MTW topology, directing the intergrown structure by sharing the (310) plane. The bolaform SDAs located in the intersections of straight 10-MR channels and sinusoidal 10-MR channels of MFI topology directed the intergrown structure by sharing the (010) plane. The hierarchical zeolite catalysts prepared using this strategy, characteristic of hybrid micro- and mesoporosities, proved to be useful for tandem cracking reactions involving bulky molecules
    corecore